Solutions 6: Quantum Channels (part 3))

Class problems

1. a) Prove that a linear map £ is completely positive iff (€ @ I)(|vec(1)){vec(1)|) is positive.
b) Hence show that i. the dephasing channel is completely positive but ii. the transpose operation is not.

Answer: a) Notice that a linear map & is complete positive iif £ ® 1 is positive.

First, we show that & is completely positive = (€ ® I)(Jvec(1))({vec(1)|) is positive. It is easy to show
that |vec(1)){vec(1)] is positive so obviously if € is completely positive, then J(E) is positive (by definition &
completely positive = € @ 1 positive <= £ ® 1(0) is positive for any positive O).

Proving the other direction ( <= ) is slightly more complicate. If J(€) is positive then it can be written as
J(E) = >k Mkler)(ex| where A\, > 0 (where )y, is the eigenvalue associated to eigenvector |ey)).

We also have J(€) = >, ; E(]i)(j]) @ [i)(j], so we have £([i)(j|) = (L & (i|)J(E)(L @ [j)). Now we define the
operators Ay by (1 ® (i|)v/Axlex) = Agli) which leads to E(|i)(j|) = >, AHZ)(]\AL and thus for any positive
operator O we have EQ 1(0) = >, (Ar ® ]l)O(AL ® 1) which is positive because if (|O|¢) > 0 for all |9) then
its also the case (positive) for any non normalised vectors i.e. for any |¢;) = (AL ® 1)|9), so € ® 1 is positive
and thus £ is completely positive (note that this is not the only way of proving it).

b) i. The dephasing channel reduces the off-diagonal elements of a quantum state. Let us assume that the
off-diagonal elements are multiplied by a factor 0 < @ < 1 (o = 1 is just the identity operation and o = 0 is
the completely dephasing channel). It is easy to show that J(£) has eigenvalues o and 1 which are positive.
Indeed, J(&) = >, ; alij)(ij|+ >, [i4)(ii|. Hence, J(£) is positive for the dephasing channel i.e. the dephasing
channel is completely positive.

ii. Here J(&) is the SWAP operator which is not positive indeed —1 is eigenvalue of the SWAP operator
associated to eigenvectors [1); ;) = %ﬁ,j) —|7,4)) for all i # j. (Recall: SWAP =3, . |ij)(jil.)

2. (Optional - just if you want more practise) Consider the other quantum channels from last week’s problem sheet.
These were

E(p) =pop+ 1 XpX +p2YpY +p3ZpZ (1)

the channel associated with the non-normalization Kraus operators

20 00
01 10
00 0 2
and the channel induced on the system quantum A by the unitary
1
U= —"=Xa®lp+Ya® Xp). (3)

V2

assuming the environment qubit starts in the state |0).

a) Write out the Choi matrices for these three channels.

b) Hence (or otherwise) find a (different) set of Kraus operators to represent the same channels.

¢) Consider the operation
E(p) = 1/3(a Tx[p]l+ B p").

For what values of a and [ does this operation output a normalized quantum state? For what values is it
completely positive?



d) For the case where £ represents a genuine quantum channel state a minimal Kraus representation for the
channel.

e) Hence state a more general expression for any set of Kraus operators that can represent

Answer:
a) The Choi matrix for a channel with Kraus operators {4;} is given by J(£) = Y, |vec(4;))(vec(A;)|. In the
po+p3s 0 0 po—ps

0 pi+p2pr—p2 O

computational basis for the polarizing channel we have J(&) = 0 PL—p2 pLAp 0
1—P2 D1 2

po—ps 0 0 po+ps

40020200

00000O0O0O0

00101002

. L 1120010100

For the Kraus operators Ag and A; (with the normalization factor), we have J(&) = 00101002
20010100

00000O0OO0O0

00202004

For the channel associated to the Stinespring dilation unitary in Eq.(3), we have J(&) = |01)(10| + |01)(10].
b) See part e).

¢) This operation is trace preserving and positive iif

aTr[i] 4+ 8 _

3 1 (trace preserving)

(4)

0<a< (+positivity) ,

Te[1] — 1

where Tr[1] = d. The trace preserving condition is straightforward by imposing Tr[p] = Tr[€(p)]. For the

positivity, we assume that p is positive (i.e. eigenvalues are > 0). Then, for any state |¢p) we have (¢p|E(p)|¢) =
T T

1/3(aTr[p] + B (lpT YY) = 0 iif (a + B %) > 0, but by positivity of p we have 0 < % < 1 for any

|1)) which leads to the result.

d) From previous answer we have the minimal set of Kraus operators given by

{ Ryl A L iy 1+ 1)y ST il ) Y05 st i€ (1,2, d} and e {z‘+17..,d}} .

e) From the lecture, we have that for any set of Kraus operators {Aj} the set {B;} such that B; = >, u; 1 Ak
where u; , are matrix element of a unitary/isometry is also a set of Kraus that describe the same channel.
(Notice that as it’s valid for isometries, then the size of set {B;} might be larger than {A;} as expected.)



	

